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SUMMARY 

A one-dimensional, time-dependent, isothermal, homogeneous, two-phase flow model was developed to study 
magma ascent in volcanic conduits. The physical modeling equations were numerically solved by means of a TVD 
(total variation diminishing) predictor-corrector procedure and by means of a predictor-corrector technique based 
on the method of characteristics. The results from the transient model were verified with an analytical solution for 
wave propagation in conduits without friction and gravitational effects. The numerical solutions were also 
compared with those of a steady-state, homogeneous, two-phase model for basaltic and rhyolitic magma ascents in 
the fissures and circular conduits of Vesuvius and Mt St. Helens. An application of the model to magma 
decompression in conduits indicates very short times for gas exsolution, fragmentation, and shock wave 
propagation, implying that the modelling of gas exsolution should involve non-equilibrium kinetics effects. Future 
coupling of the transient magma ascent model with magma chamber and pyroclastic dispersion models should 
allow for more realistic simulations of the time-dependent behavior of real volcanic eruptions. 
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1. INTRODUCTION 

The flow of magma through a volcanic system to the ground surface takes place through various types 
of conduits depending on the magma at depth and on the geological and structural characteristics of the 
surrounding rocks and soil. Low viscosity or basaltic magmas erupt effusively from fissures, whereas 
the more viscous silicic magmas erupt pyroclastic products from central vents that may be fed by dikes 
or magma reservoirs. As the magma rises through conduits, both effusive and explosive eruptions 
exsolve the dissolved gases in the magma, and the magma may interact with aquifers within the 
volcanic system. The dissolved gases in magmas consist primarily of water vapour and carbon 
dioxide,' and the exsolved gases, in the form of bubbles, grow by mass diffusion, inertia, surface 
tension, heat transfer, and decompression.2 

A large viscosity magma prevents the relative motion between the gas and the magma, and the two- 
phase flow along a conduit is essentially homogeneous until the gas concentration becomes sufficiently 
large andor external perturbations cause magma fragmentation within the Above the 
magma fragmentation level in a volcanic conduit, the flow consists of a continuous gas phase with 
dispersed pyroclasts, and a significant gas-particle velocity non-equilibrium may exist for large size 
pyroclasts. The flow of gas and magma through a volcanic conduit may also produce large differences 
between the lithostatic and magmatic pressures near the magma fragmentation level,3 and these 
differences may cause rupture of the conduit wall. As a result, rock and water may flow into the 
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volcanic conduit leading to violent phreatomagmatic eruptions when vaporization of water with 
fragmented magma occurs.435 

Previous models of gas-pyroclasts flows through volcanic conduits involved ~teady-state~,~-" and 
transient' approaches. The steady-state, non-homogeneous, two-phase flow model of gas-magma flow 
through volcanic conduits developed by Dobran3 demonstrated the importance of magma composition 
and non-equilibrium slip flow in determining the eruption dynamics. This model was subsequently 
refined and used to study the plinian and pyroclastic flow eruption phases of Vesuvius in AD 79 and 
Mt St. Helens on 18 May 1980,'49'5 erosion processes in volcanic conduits,I6 and pyroclastic flow 
hazards at Vesuvius.'7 

Turcotte et al. ' developed a transient, one-dimensional, homogeneous, two-phase flow model to 
study shock wave propagation along a volcanic conduit after a sudden pressure decrease in the magma 
and did not account for gravitational and frictional effects along the volcanic conduit. They showed 
that a sudden pressure decrease in the magma produces an exsolution front which propagates into the 
magma column, a fragmentation front which propagates into the air, and a shock wave which moves 
ahead of the fragmentation front. The transient model developed by Turcotte et predicted exit 
velocities and magma fluxes which were found to be consistent with data from some typical eruptions. 

An accurate model of explosive volcanic eruptions must involve unsteady motion of gas and magma 
through volcanic conduits. This unsteadiness is produced by the changing magma properties at the 
conduit inlet caused by the withdrawal of magma from temperature- and composition-stratified 
reservoirs," water inflow into the conduits from underground aquifers," changes in the conduit cross- 
section caused by erosion processes,'6 varying stress levels imposed on the conduit wall, and changes 
in the volcanic column dynamics above the volcanic For volcanic eruptions characterized by 
magma ascent times smaller than the times associated with the changes in the eruption dynamics 
(usually, Plinian eruptions), a quasi steady-state model of magma ascent may be acceptable. This is not 
so during the opening phases of eruptions and when the changes in the conduit cross-section are 
significant; these changes are caused, for example, by conduit wall collapses and activation and 
disactivation of aquifers at different depths. The Vulcanian eruptionsz3 and the opening phases of 
Plinian eruptions resemble explosionsz4 and require a transient magma ascent analysis. 

The purpose of this paper is to present a one-dimensional, time-dependent, homogeneous, two- 
phase model for magma ascent in volcanic conduits of uniform cross-section in the absence of external 
magma-water interactions, but in the presence of gravitational and fictional effects. It will be shown 
that the results of the transient magma ascent model are in very good agreement with previous 
modelling approaches, and that the gravitational and frictional effects are important when modelling 
transient magma ascent along long volcanic conduits. Moreover, during the opening phases of magma 
decompression, very strong shock waves may propagate through the volcanic conduit, and the non- 
equilibrium kinetics effects associated with gas exsolution may be very important. 

2. PHYSICAL MODEL 

Figures 1 and 2 illustrate a volcanic conduit and the magma conditions at two different times. At time 
t = 0 (Figure I), magma under pressure is contained within a conduit at a height LI above the magma 
chamber. At t = O+, the partition at z = L1 is broken and the magma is allowed to decompress and push 
the air in front of it. At a subsequent time shown in Figure 2, the decompressing magma produces a 
downward moving exsolution front, an upward moving fragmentation front, and a shock wave in the 
air in front of the fragmentation front. The exsolution front corresponds to the pressure where the gases 
dissolved in the magma begin to exsolve and to a gas volumetric fraction a=O, whereas the 
fragmentation front is assumed to correspond to c1= 0.75.2*3 The velocities of these fronts are denoted 
by us, uf, respectively, while ush denotes the shock wave speed. DH is the hydraulic diameter of the 
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Figure I .  Schematic illustration of an initial state of magma in a volcanic conduit. Magma is kept under pressure at a height L ,  
above the magma chamber 

conduit, L is the conduit length, and the pressure PO and temperature To of the magma in the magma 
chamber are assumed to be constant during decompression. It is also assumed that the magma flow is 
isothermal at the temperature TO which in the absence of magma-water interactions is an excellent 
assumption in view of the high thermal capacity of the magma which keeps the expansion of the gas 
nearly i ~ o t h e r m a l . ~ ” ~  The air ahead of the shock wave is kept at atmospheric pressure and at the 
constant temperature of the magma. 

The initial magma conditions illustrated in Figure 1 are idealized and only serve to establish some 
limiting conditions of magma ascent during the transient time of flow development leading to steady- 
state. In this state, the exsolution and fragmentation fronts are stationary and the flow exits into the 
atmosphere with pressure, velocity, and gas volumetric conditions determined by the conduit geometry, 
magma chamber pressure and temperature, dissolved water content in the magma, and atmospheric 
pressure. The opening phase of an eruption is extremely difficult to define due to the close 
interrelationship between the magma motion through opening fractures and thermal stress conditions 
of the non-homogeneous, non-isotropic surrounding rock media.25 

2. I. Description of the physical model 

The governing equations of one-dimensional, unsteady, two-phase, homogeneous fluid flow are26 

OP aPu -+-=o, 
dt az 
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Figure 2. A sudden decompression of magma caused by the opening of the partition at L ,  produces a downward moving 
exsolution front and upward moving fragmentation and shock wave fronts as the magma expels the air from the volcanic conduit. 

The magma conditions at the conduit entrance are held fixed 

where p is the mean density of the gas-magma mixture defined as 

u is the velocity component of the gas and magma along the volcanic conduit, P is the pressure, c i  is the 
volumetric or void fraction of the gas, f is the friction factor, t is time, z is the co-ordinate along the 
conduit, g is the gravitational acceleration, and Per and A are the perimeter and cross-sectional area of 
the conduit respectively. The subscripts G and L denote the gas and liquid, i.e. pyroclasts above the 
magma fragmentation level, and magma below this level, phases respectively. 

p = apG f ( l  - ci)pL~ (3) 

The friction coefficient f can be specified as 

plulD€I a f =-+b ,  Re 
Re = ~ CL (4) 

where a and b are constants, DH is the conduit's hydraulic diameter, Re is the Reynolds number, and 
p is the mixture viscosity. 

The use of a mixture viscosity in evaluating the viscous drag at the wall is due to the fact that when 
bubbles or particles move through a fluid they distort the flow field and the motion of particles is 
affected by the forces exerted upon them by other particles. In the bubbly and gas-particle/droplet flow 
regimes, the mixture viscosity is given by3 

(5) 

/J,=pG , 0.75 < ci < 1, (6) 

-2'5(~G+0.4~L)/(~Gf~=), 0 < c1 < 0.75, P = PL(1 - .> ( laLU) -2'5ad,(~Lf0'4~G)/(~LLf~G) 

where ah = 0.62 is the maximum particle packing density. 
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The gas can be modelled by an ideal equation of state,3 and the exsolved gas mass fraction X can be 
expressed as 

p G = r l  P X =  ( I + -  ;;!$, 
R TO 

(7) 

where k is the specific gas constant and TO denotes the (constant) temperature. 

gas mass fraction can be found, i.e. 
The dissolved gas mass fraction, I: may be determined from Henry's law from which the exsolved 

x = Yo - Y ,  Y = SP, (8) 

where Yo is the maximum dissolved gas mass fraction in the magma, and S and n are exsolution 
constants which depend on the magma composition. It must be noted that Henry's law is an 
equilibrium equation which is strictly valid when the kinetics of interfacial mass transfer, i.e. 
exsolution, are much faster than the characteristic times of unsteadiness and residence of the flow in 
the volcanic conduit. 

The above equations, together with the initial and boundary conditions to be specified in the next 
sections can be written in non-dimensional form by introducing the following variables and parameters 

P - PG 

Pa Pa 

U 
p = - , pG = -, UOt  - z -  z = -  , z = -  , u = -  

DH DH a0 l 

where the reference velocity and density are defined, respectively, as 

The dimensionless form of the physical model expressed by ( 1  HS) thus becomes 

ap apii -+-=o, az az 

(9) 

where 

where Fr is the Froude number. 
The differential equations ( 1  1 )  and (12) can be solved for the density p and velocity z j  as a function 

of z and 2, since the gas volumetric fraction, pressure, gas density, and exsolved gas mass fraction can 
be expressed in terms of the mixture density. To illustrate this procedure, it is convenient to express the 
dissolved gas mass fraction in a piecewise linear manner as a function of the pressure, i.e. 

- 

Y := p - yP = p - yP, 7 = yPam, ( 1 5 )  
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where B and y are constants whose values depend on the interval used to approximate (8b) in the 
piecewise linear fashion defined by (1 5a). 

Using (15) and (13), we have 

a=-- 
% 

p G = P = :  Y o - ( l - a ) z  , 
- Y Y- "1 P 

where 

2.2. Initial conditions 

The solution of (1 1) and (1 2) requires initial and boundary conditions. The initial conditions shown 
in Figure 1 define stationary magma and air in the volcanic conduit where the gas in the magma is 
assumed to be completely dissolved. Thus, for Z < L l / D ~ ,  

U ( T  = 0 , Z )  = 0, P ( z  = 0,Z) = R, (19) 

and 

(20) 
PO P&LI DH5-. 

ct(5 = 0, z) = X( z = 0 , q  = 0, F(? = 0,Z) = - - - - 
p a t ,  Pam Ll 

For Z> LIIDH, the air in the volcanic conduit is stationary and the pressure is hydrostatic at 
temperature To. 

2.3. Boundary conditions 

The boundary conditions at Z= 0 and Z= LIDH must be determined from (1 1) and (12) as follows. 
Equations (1 1) and (1 2) can be as 

dU aF - + - = s ,  
8 5  az 

where the vectors U, F, and S are defined as 

F = (zt) = ( - - p u  puu f P  -) 
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Equation (21) can also be written as 

au au 
- + H - = S  
a7 az 7 

where H = BF/aU is a Jacobian matrix whose eigenvalues and eigenvectors are, respectively, 

I+ = u + c, A- = -u + c, (26)  

(1, I+)T, (1, UT, (27) 

the superscript T denotes transpose and 2 = @/ap is the square of the speed of sound. Therefore, (25) 
is hyperbolic and the boundary conditions at f =  0 and Z= LIDH 
here referred to as inflow and outflow, respectively, are determined from the number of characteristics 

entering into the flow field at these boundaries. Since the flow Mach number is less than one except at 
the outflow boundary where it may be equal to one, the number of incoming characteristics at the 
inflow boundary is one. Therefore, only one boundary condition may be specified at that boundary. An 
analogous reasoning at the outflow boundary indicates that only one boundary condition may be 
imposed there for subsonic, i.e. 1 I1 < C, flow, and that no boundary condition may be imposed at the 
outflow boundary if the flow is choked at the exit of the volcanic conduit. 

The following three types of inflow boundary conditions were employed in the numerical 
experiments reported in this paper 

u(7,z = 0 )  = uo, (28 1 

i i ( z , Z  = 0 )  = Po/P,,. (30) 

Equation (28) specifies the conduit inlet velocity Is, which may be determined from the mass 
eruption rate, conduit diameter, and magma density. Equation (29) corresponds to a gas volumetric or 
void fraction equal to zero (cf. (13a)) which implies (cf. (13d)) that the exsolved mass fraction at the 
entrance of the conduit is zero. Finally, (30) specifies the pressure at the conduit’s entrance. If this 
pressure is above the exsolution pressure, X =  0, PG = 0 and p = R according to (8), (7) and (3), 
respectively. 

When the flow is not choked at the conduit exit, the exit pressure is atmospheric. For choked flows, 
the exit pressure must be determined from the model, and the flow velocity at the conduit exit is equal 
to the local speed of sound to prevent upstream propagation of the downstream pressure. A choked 
flow condition in a volcanic conduit corresponds to the maximum flow rate compatible with the 
conduit geometry, magma properties, and conduit flow inlet conditions under steady state  condition^.^ 
Thus, 

P(z, Z = L/DH) = 1 (non-choked flow), (31) 

U ( 7 , Z  = L / D H )  = /$ (choked flow), 

The nondimensional parameters of the homogeneous, two-phase flow model presented in this paper 
are Fr, I ,  = L/DH, i1 = Ll/DH, PerlA, hction coefficients a and b, Reo, R, YO, p ~ l p o ,  PdPah, p~ 
gLI/Pah, and the local values of and 7. 
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3. NUMERICAL SOLUTION PROCEDURE 

Equation (21) must be solved in the single- and two-phase regions of the conduit subject to the initial 
and boundary conditions specified in the previous section. In the single phase region of the conduit 
where the gas is completely dissolved in the magma, a=X=O, the magma density is assumed 
constant, and (21) becomes 

p = R, U = const = U o ,  (33) 

for 

- B - Y o  
P a  -, 7 (35) 

as determined from (15). When the equality holds in (35), the gas dissolved in the magma begins 
exsolving and the flow develops as a bubbly flow for a 5 0.75 and as a gas-particle/droplet flow for 

Equation (21) was solved numerically by means of the techniques presented in the following 
subsections. For convenience, the bars over the dimensionless variables are dropped in what follows. 

a >  0.75. 

3.1. Method of characteristics 

Equations ( 1  1 )  and ( 1  2) may be written as 

a p  ap ,au 
-+u-+pc -=o ,  
a z  az dZ 

where use has been made of the isothermal character of the flow. 
Equations (36) and (37) can be combined as 

where Q has been introduced arbitrarily. 
If Q = c, i.e. along 

Equation (38) becomes 

-+A+--+pc 
a p  ap+ 
a T  8 Z  

If Q= - c, i.e. along 

(36) 

(37) 

- dz - - A - = u - c ,  
dz 
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Equation (38) becomes 

26 1 

Adding (40) and (42), the following A-form equation for the pressure results 

(43) 

Similarly, by subtracting (40) and (421, the following A-form equation for the velocity is obtained 

Note that, in (43) and (44), the spatial derivatives have been marked with + and - in order to 
indicate the characteristic directions along which these derivatives are approximated. 

Equations (43) and (44) were solved by means of the following explicit, predictor-corrector 
method.27 

Predictor step 
This step consists of two parts. In the first part, the predicted solution is determined from 

(45) 

where, for example, 

; A z l  (46) 

(47) 
- T+, - T 

In the second part, the predicted values of dU*/& are determined from (43) and (44) by means of 
the following expressions 

7 (48) Az 

Az (49) 

Corrector step 
The corrected values of d U / d ~ ,  i.e. dU"/&, are determined from (43) and (44) with 

Pi* - 

i Az. 
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Finally, Uy+' is calculated as 

u;+' = u; +- A'((")' - + -  ("")*) 
2 az ar 

The predictor-corrector method presented in this section is only applicable at the interior points. 
Boundary points require a special treatment as shown next. 

Boundary conditions 
The inflow and outflow boundary conditions were implemented as follows. Equation (38) with Q = c 

becomes along the right running characteristic, i.e. q = const., whose slope is given by (39) 

(53) 

while the same equation becomes along the left running characteristic, i.e. 5 = const., whose slope is 
given by (41) 

(54) 

Integration of (53) and (54) along the right and left, respectively, running characteristics yields 

PY" - + (p~)Y+~(u;+ '  - u;+,) = A T ( c ( - + - - ~ / . ~ u ~ ) ) '  p 1 Per , 
Fr 2 A i+ 1 

where the coefficients of (53) and (54) have been evaluated at the known time level. 
Equation (55) was solved simultaneously with the imposed atmospheric pressure at the outflow 

boundary if the exit flow was subsonic. Similarly, Equation (56) is solved simultaneously with the 
imposed boundary condition at the inflow boundary. If the flow is sonic at the outflow boundary, 
Equation (55) is to be solved subject to (32). 

The method of characteristics presented in this section is explicit, second-order accurate, and non- 
conservative, and it is not capable of capturing accurately shock waves. It is related to flux splitting 
algorithms since the Jacobian matrix, H, can be written as H = H+ + H- where H+ = TA+T-' and 
H - = TA-T-', T is the matrix of left eigenvectors associated with H, and A+ and A - are the 
diagonal matrices of positive and negative eigenvalues of H respectively.28 With this splitting, 

au au au 
az az az H- = H+-- + H- - 

and the terms dU/dz which post-multiply H+ and H - are discretized by means of backward and 
forward differences respectively. Flux splitting algorithms which use one-sided differences are capable 
of capturing shock waves, but they are less economical than the method of characteristics presented in 
this section.29 

3.2. TVD finite diflerence method 

Equation (21) was also solved by means of the explicit MacCormack's finite difference method3' 
with the artificial viscosity model due to Davis3' which yields a TVD (total variation diminishing) 
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technique. The MacCormack's finite difference method predicts the solution at time ?+' ,  i.e. U:, by 
means of the following first-order forward temporal and spatial difference expression 

while corrected solutions, i.e. Uf, at the same time step are obtained by means of the following 
backward temporal and spatial difference expression 

(58) 
1 AT 

' 2 '  Az 
IJC = - (U* + U: - - (e - e-,)). 

MacCormack's finite difference scheme is conservative and consistent but produces oscillations near 
steep flow gradients unless artificial viscosity is employed to smooth the corrected solution. In this 
paper, the final solution at time T'+ ' was calculated as 

U;'' = LJ; + DY+; - DY-1, (59) 

where the dissipative term DY+$ takes into account the relative changes in the solution gradients as 

where 

AUY+; = U;+' - Ul. 

A flux limiter, 4,  was defined as 

$(rT,rr:) := max(0, min(2rT1rr:, I ) ,  min(2rI:,rTl I ) ) ,  

while the following Courant-number-dependent fkction, C(v), was calculated as 

C ( V )  = v ( 1  - v ) ,  if v L i ,  
1 
4 

C(v) = -, otherwise, 

where v = I+!JAz/Az and I+!J denotes the largest eigenvalue of H. 
Finally, a dissipation coefficient, y+t, was calculated as 

so that the dissipative term in (59) becomes 

DY+t = Kr>t(yf, ri+l)uY+t. 

The MacCormack's finite difference method is second-order accurate in both space and time, and 
conservative. 
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3.3. The Lax-Wendrof method with smoothing 

Equation (21) was also solved numerically by means of the two-step, second-order accurate (in both 
space and time), predictorkorrector procedure of Lax-Wendroff 29 at each time step. This procedure 
introduces, however, unphysical oscillations due to dispersion errors near steep fronts. To eliminate 
these oscillations and maintain the positivity of the solution, smoothing was introduced after obtaining 
the solution of the corrector step. 

The computational domain involved the entire conduit and consisted of uniformly spaced grid points 
along the conduit. Different number of points were used to ascertain the grid-independence of the 
numerical solution. For an interior node i and time step n ,  the predictor step is 

where AT and hz- are the increments in time and space respectively. The corrector step is 

The final solution is then obtained by applying smoothing to the dependent variables according to the 
following procedure 

where v is an artificial viscosity coeficient which is to be found on the basis of trial and error to avoid 
excessive smearing of the solution and oscillations in front of and behind steep flow gradients. A value 
of v = 0.01 was found to be sufficient in most of the calculations presented here. 

It should be pointed out that the MacCormack method and the smoothing presented in this section 
were also used to determine the flow field in volcanic conduits. Since both methods yielded essentially 
the same results when v was adequately chosen, only the Lax-Wendroff method is reported here. 

The time step in all the numerical procedures presented in this section was selected to satisfy the 
Courant-Friednchs-Lewy condition for stability and convergence of finite difference schemes applied 
to hyperbolic equations,32 i.e. 

where I? denotes the nondimensional speed of sound. The space increment b-, or total number of grid 
points, was kept as a parameter in the computations to assess the sensitivity of results to the number of 
grid points. 

All computations were performed with double precision arithmetic, and the steady-state was 
assumed to be achieved when the following condition 

was satisfied, where the superscript T denotes transpose. 
It must be noted that the finite difference methods described in the two previous sections are only 

valid at interior points. The boundary points were treated in two different manners. In the first manner, 
the method of characteristics described before was used to implement the inflow and outflow boundary 
conditions. This method was found to be very time consuming because of the need for interpolations 
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and extrapolations since the characteristics do not pass through adjacent nodes at two subsequent time 
steps. The second manner of implementing the boundary conditions is the one commonly used in 
computational fluid dynamics, i.e. (a) at a subsonic outflow, the pressure is specified and the velocity is 
extrapolated from the interior, (b) at a sonic outflow boundary, all the flow variables are extrapolated 
from the interior, and (c) at a subsonic inflow boundary, all the flow variables except for the pressure 
are specified, while the pressure is taken from that of the neighbour computational node. 

4. INPUT DATA FOR TRANSIENT AND STEADY-STATE MAGMA ASCENT MODELLING 

The four sets of input data summarized in Table 1 were used to model transient and steady-state 
magma ascent in volcanic conduits. The analytical solution of Turcotte et al. l 3  was used to verify the 
accuracy of the time-dependent model presented in this paper for wave propagation phenomena in 
volcanic conduits without frictional and gravitational effects. The AD 79 gray and white magma 
eruption data of Vesuvius were employed to anaIyse transient and steady-state magma ascent in 
volcanic conduits with frictional and gravitational effects, whereas data for both basaltic fissures and 
the 18 May 1980 Mt St. Helens were used to compare the results obtained with the transient model 
presented in this paper with those from the homogeneous and non-homogeneous, steady-state models 
of D ~ b r a n . ~  The data presented in Table I cover a wide range of magma compositions and conduit 
geometries and were used to assess the validity of the transient magma ascent model presented in this 
paper before employing it both to the analysis of transient magma ascent in volcanic conduits and 
refining it to include variable magma density, and to account for the presence of crystals in magma and 
use improved magma viscosity laws. 

5.  PRESENTATION AND DISCUSSION OF RESULTS 

The model equations together with the initial and boundary conditions discussed in previous sections 
were first solved numerically by neglecting frictional and gravitational effects so as to compare the 
results with the analytical solutions for transient wave propagation in volcanic conduits obtained by 
Turcotte et al. l 3  Figure 3 illustrates this comparison in terms of the vent exit velocity, magma chamber 
pressure, and maximum dissolved water content in the magma. As seen in the figure, the numerical 

Table I. Input data for the magma ascent model 

Ref 13 Vesuvius AD 79 Fissures Mt. St. Helens 
Graymite 18 May, 1980 

Friction constants, a, b 
Conduit diameter DH (m) 
Conduit length L (km) 
Initial magma length L ,  (km) 
Magma chamber pres. Po (MPa) 
Magma temp. To (K) 
Magma viscosity p (Pa s) 
Dissolved water Yo (wt%) 
Magma density p L  (kg/m3) 
Mass flux G (kg/m2 s) 
Atm. pressure Pam (MPa) 

i l i  
1500 
(1) 

0.2, 1 ,  5 
2500 

(1) 
0.1 

16/0.0 1 
100 
5 
1 

132.5 
1120 
(2) 

3.514.7 
2550/2400 

1.9U1.02 x lo4 
0.1 

2410.01 
0.25-3 

1 
0.2 

27.54 
1200 

1 0 ~ 1 0 0 0  
1 

2600 
Figure 8 

0.1 

16, Figure 14 
95 
7 

1.4 
185 
1200 
(3) 
4.6 

2600 
Figure 14 

0.1 

(1) Not needed; 
(2) Equation (73); 
(3) Constant or Equation (73). 
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Figure 3. Comparison between the numerical results with 100 grid points and the analytical solutions of Turcotte et aI.l3 for 
magma flow through conduits without frictional and gravitational effects. Shown in this figure is the exit velocity of the gas- 
magma mixture as a function of magma chamber pressure and dissolved water in the magma for fixed magma density, 

temperature, and atmospheric pressure 

solution involving 100 grid points reproduces very well the analytical solution even for high values of 
the dissolved water in magma for which the flow gradients are high. An increase in the number of grid 
points to 500 produced essentially no difference between the numerical results and the analytical 
solution of Turcotte et ~ 1 . ' ~  for all water contents shown in Figure 3. 

The results corresponding to a sudden decompression of magma at 200 m above the magma 
chamber in a basaltic fissure 1 m wide and 1 km long are shown in Figures 4 and 5 for different 
numbers of grid points. Figure 4 shows the propagations of downward moving exsolution (a = 0) and 
upward moving fragmentation (a = 0.75) fronts, and the pressure distribution in the conduit at various 
times. The gas volumetric fraction and the fluid velocity distributions along the conduit at different 
times are shown in Figure 5. The results presented in Figures 4 and 5 were obtained with a constant 
magma viscosity pL = 500 Pa s, gas viscosity pG = lo-' Pa s, and n = 0.7 and 
S =6.8 x (cf. (8)). As shown in these figures, 1000 grid points cause too much 
smearing due to numerical diffusion and lack of resolution, while 4000 points appear much more 
adequate to model the transient magma propagation from the assumed initial state. Initially, the magma 
moves with very steep pressure and void fraction gradients, and the flow in the volcanic conduit 
reaches very high velocities. These gradients and velocities decrease with time until a steady state is 
reached. The predicted magma propagation characteristics in the volcanic conduit presented in Figures 
4 and 5 should be interpreted with great caution due to the perhaps unrealistic initial conditions used in 
the calculations. If such initial conditions existed in reality during the opening phases of volcanic 
eruptions, the ascending magma would very efficiently produce ruptures in the conduit wall and flow 
to the ground surface. 

The results corresponding to a sudden decompression of gray magma at about 1 km above the 
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Figure 4. Propagation of exsolution and fragmentation fronts, and pressure distribution along the conduit for a 1 m wide 1 km 
deep basaltic fissure, with magma decompressing from about 200 m above the magma chamber. A constant magma viscosity of 
500 Pa s, Henry's exsolution law (see text), and other data indicated in Table 1 were used in producing the results for different 

number of grid points 

magma chamber of Vesuvius which is located at a depth of 5 km are illustrated in Figures 6 and 7. 
These figures correspond to the following magma viscosity33 

(73) 
-133Y 

PL = P$XP 1 

where po = 2 x lo7 Pa s accounts for both the anhydrous composition of the magma and the crystal 
~ o n t e n t . ~  The exsolution of gray magma of Vesuvius was modelled by accounting for the gray magma 
composition according to Papale and Dobran14 as 

P > 237.58 x lo5 Pa, Y = -0.68995 x lop2 + 8.7273 x 1O-IoP, 

P < 237.58 x 105 Pa, Y = -4.8747 x lGP4 + 6.0284 x 1O-Iop, (74) 



268 J. I. RAMOS 

1 

a 

- 4000 GRID POINTS 

1000 GRID POINTS 

X MAGMA FRAGMENTATION 

MAGMA EXSOLUTlON 

0 
n 

2 
D 
- L 

D 
- 

GAS VOLUMETRIC FRACTION 

5 -  

uo= 6 = 5 6 7 m / s  
5:' -5671 

4 -  t o  

U 

3 -  

- 
uo 

X MAGMA FRAGMENTATION 

0 MAGMA EXSOLUTION 

L 2 - 
D 0 

VELOCITY DISTRIBUTION 

0 
- 

Figure 5.  Gas volumetric fraction and velocity distributions along the fissure defined in Figure 4 

where the pressure P is in Pa. The trends in the exsolution and fragmentation fronts, and pressure, gas 
volumetric fraction and velocity distributions along the volcanic conduit shown in Figures 6 and 7 are 
similar to those for basaltic fissures, except that the gradients are much steeper because they are caused 
by magma decompression at high pressure. 

The transient decompression results of white magma for the AD 79 eruption of Vesuvius based on 
the exsolution model of Papale and Dobran14 

P > 49 x 106Pa, Y = -0.022686 + 1.0421 x 10-9P, 

24.595 x lo6 < P 5 49 x 106Pa, Y = -0.0071891 + 7.263 x lO-'OP, 

P G 24.595 x 106Pa, Y = -4.31 14 x + 4.5153 x lO-'OP, (75) 

differ very little from those of the gray magma decompression shown in Figures 6 and 7 and are not 
reported in this paper. In general, the white magma decompresses slightly slower probably due to its 
higher dissolved water content. 
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Figure 6. Propagation of exsolution and fragmentation fronts, and pressure distribution along the 5 km long volcanic conduit of 
Vesuvius, with gray magma decompressing from about 1 km above the magma chamber. The magma viscosity was modelled 
according to Shaw, 33 while the gas exsolution was modelled according to Papale and Dobran.14 Other data used in the model are 

given in Table 1 

The results presented in Figures 3-7 were obtained with the TVD finite difference method. It was 
found that an artificial viscosity of v = 0.01 in the Lax-Wendroff method yielded comparable results to 
those shown in Figures 3-7 away fiom the shock front, while, at the front, the differences between the 
results of the TVD finite difference and Lax-Wendroff methods were as large as 7.23 per cent in the 
L ,  norm. These differences are undoubtedly due to the use of a constant artificial viscosity in the Lax- 
Wendroff method employed in this paper, while the artificial viscosity of the TVD finite difference 
method is controlled by the flux limiter. Furthermore, it is important to indicate that the Lax-Wendroff 
method yielded much smoother shock fionts than the TVD scheme. Note that the artificial viscosity of 
the Lax-Wendroff method employed in this paper is controlled by the shock front where the flow 
gradients are largest. 

The method of characteristics presented in this paper did not capture well the analytical wave 
propagation reported by Turcotte et al.” In fact, this method predicted smoother shock fronts than the 
TVD algorithm. This result was somewhat expected since the method of characteristics employed in 
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Figure 7. Gas volumetric fraction and velocity distributions along the volcanic conduit of Vesuvius defined in Figure 6.  

this paper is non-conservative. The differences between the results of the TVD algorithm and those of 
the method of characteristics were as large as 5.78 in the L ,  norm. 

In view of these results, the computations reported next were performed with the TVD finite 
difference method. 

The transient model of magma ascent in volcanic conduits also predicts the steady-state distributions 
of pressure, gas volumetric fraction, velocity, etc., after the transient period of flow development. 
Figures 8-14 illustrate this prediction for different conduit geometries and magma compositions, and a 
comparison with the results of both the homogeneous and the nonhomogeneous, steady-state, two- 
phase flow magma ascent models of D ~ b r a n . ~  The results for basaltic fissures shown in Figures 8-12 
show that the two homogeneous models are in very good agreement for different magma viscosities 
and fissure widths, and that the predictions of these two models disagree with those of the non- 
homogeneous model for the smaller fissure widths and larger magma viscosities considered here. The 
steady-state, non-homogeneous, two-phase flow model of Dobran3 accounts for slip, i.e. the relative 
velocity between the exsolved gas and the magma; this slip may be considerable above the magma 
fragmentation level in the volcanic conduit. 



TWO-PHASE FLOW IN VOLCANIC CONDUITS 27 1 

4 00 
uG , u,(DOBRAN,1992) 

UI -- - - .. _- 100Pas ‘E - - 200 - ==cz 1000 Pa s : 
3 

Po = 27 54 MPa, T=1200 K 

(DOBRAN.1992) (PRESENT THEORY 0 

L----- _ _ _ _ _ _ _ - _ -  - - - - - -  
1 -  

_ - _ _ _ - - - - -  
6x104 

OMOGENEOUS 7 NONHOMOGENEOUS 7 

HOMOGENEOUS 

0 1 2 3 4 5 6 

FISSURE WIDTH (m) 
Figure 8. Distributions of critical discharge rates and exit pressures and velocities for fissures of different widths and magma 
viscosities, obtained by the homogeneous and non-homogeneous models. Other data used in the model are given in Table 1 

Figures 13 and 14 show comparisons between the pressures and gas volumetric fractions obtained 
with the present transient model and those of the non-homogeneous, steady-state model of Dobran3 for 
the gray and white magma eruptions of Vesuvius in AD 79 and Mt. St. Helens on 18 May 1980 
respectively. As seen from these figures, the comparisons between the results of the two models are 
very good for a wide range of parameters of these explosive volcanic eruptions. The magma viscosity 
was modelled according to (73), whereas the exsolution was modelled according to (8) with n = 0.5 
and S=4.1 x 10 - Pa- 0’5 for the Mt. St. Helens and (74) and (75) for Vesuvius. 

The results presented in Figures 4-7 indicate that the decompression of different magmas in various 
types of volcanic conduits occurs very fast with shock waves traveling through the conduit in less than 
a second. The accuracy of this prediction depends on the exsolution kinetics; if the flow residence time 
is much larger than that associated with the exsolution of dissolved gases, the accuracy of the results 
presented in Figures 4 7  may be very good, Note that Henry’s law was employed to determine the 
dissolved gas mass fraction, and that this law is strictly valid when interfacial mass transfer phenomena 
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Figure 9. Distributions of volumetric fraction and pressure along a fissure 1 m wide and comparison with the results of steady- 
state homogeneous and non-homogeneous models. (a) Magma viscosity is 100 Pa s, and @) Magma viscosity is 1000 Pa s 

are much faster than fluid dynamic processes. Clearly, future efforts in gas exsolution modelling should 
address the effects of time on the exsolution of different magmatic gases from different magma 
compositions at lfferent temperatures. It should also be noted that the assumed magma decompression 
from the initial state depicted in Figure 1 is probably not very realistic. Magma probably channels its 
way through the surface by slowly opening fractures until the pressure increase due to the exsolution of 
magmatic gas is sufficient to produce an ‘explosive’ opening of the volcanic conduit. A particular 
choice of the initial state of magma in a volcanic conduit is clearly unimportant if we are only 
interested in steady-state flow. The initial conditions used in this paper and shown in Figure 1 serve to 
both initiate the transient magma flow and test the numerical algorithm. 



TWO-PHASE FLOW IN VOLCANIC CONDUITS 273 

1 

PLU 
G 

lJ*= - 

I 

4 

0 

2 w = l m , T = 1 2 0 0 K  
Po= 27.54 MPa 
L =  l000m 
Yf = 0.01 
p L= 2600 kg/m 

p = 100 Pas  _ _  
L - 

_ _ _ _ _  pL= 1000 Pa s _ -  

J ~ . ,  u; (DOBRAN.1992) 

u ; ~  (DOBRAN.1992: 

I 1 1 I 

0 2  04 06 0 8  1 
2 

0 - 
L 
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steady-state homogeneous and non-homogeneous models 

An important assumption in the model presented in this paper is that during the transient magma 
ascent, the volcanic conduit inlet conditions remain unchanged. In reality, this cannot be the case but 
may be approximated under certain conditions depending on the magma chamber geometry and the 
thermofluid-dynamic phenomena. When magma decompresses in a volcanic conduit, a downward 
moving wave enters into the magma chamber and may modify its thermofluid-dynamic conditions 
which in turn affect the conduit inlet conditions. A similar situation occurs at the conduit exit where the 
volcanic column developing above the vent may affect the magma flow conditions in the conduit, if the 
flow at the conduit exit is not choked. A realistic transient model of magma ascent in volcanic conduits 
should, therefore, account for the magma chamber, the volcanic conduit, and, possibly, the volcanic 
column. Such modelling is very complicated and constitutes a significant part of a project on global 
models of volcanoes.25 

The agreement between the predictions of the steady state flow obtained with the transient, 
homogeneous, two-phase flow model presented in this paper and those of the homogeneous, steady- 
state, magma model of Dobran3 provides an important validation of both models, since the physical 
equations were solved by different numerical procedures. (Dobran3 used a stiff integrator for initial 
value problems and a shooting technique). The slight differences between the results predicted by these 
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Figure 11. Distributions of gas volumetric fraction and pressure along a fissure 3 m wide and comparison with the results of 
steady-state homogeneous and non-homogeneous models. (a) Magma viscosity is 100 Pa s, and @) magma viscosity is 

1000 Pa s 

two homogeneous models (cf. Figures 8-1 2) may be due to the errors of the two numerical algorithms 
and the different number of grid points as well as to the approximate procedure used by Dobran3 in his 
non-homogeneous model to force the flow to behave homogeneously. Such a procedure consisted of 
taking a very high interfacial drag coefficient between the gas and the magma which prevented the 
relative motion between the phases. The differences between the results predicted by the homogeneous, 
time-dependent model presented in this paper and the steady-state, non-homogeneous or velocity slip 
model of Dobran3 shown in Figures 8-14 clearly show the importance of non-equilibrium effects in 
volcanic conduits above the magma fragmentation level where the gas and pyroclasts accelerate 
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Figure 12. Distributions of velocities along a fissure 3 m wide for different magma viscosities and comparison with the results of 
steady-state homogeneous and non-homogeneous models 

differently. Such differential acceleration produces large velocity differences at the exit of the conduit 
for large size pyroclasts. In particular, the pressure and gas void fraction distributions along the conduit 
predicted by the homogeneous and non-homogeneous models agree rather closely with each other for 
pyroclasts sizes of up to 100 pm. 

6 .  CONCLUSIONS 

A one-dimensional, time-dependent, isothermal, homogeneous, two-phase flow model was developed 
to study magma ascent in volcanic conduits. At each grid point, the physical modelling equations were 
solved explicitly by means of a TVD predictor-corrector method and a predictor-corrector tecnique 
based on the method of characteristics. The numerical solutions were verified by comparisons with an 
analytical solution for wave propagation without friction and gravity in volcanic conduits, and with the 
predictions of a homogeneous, two-phase, steady state model of magma ascent for different volcanic 
conduit diameters and lengths and magma compositions. 
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Figure 14. Gas volumetric fraction and pressure distributions from present and previous steady-state models of magma ascent 
along the 7 km long and 95 m diameter conduit for the Mt St. Helens eruption on 18 May 18 1980. The results show the effects 
of critical discharge rates, constant and variable magma viscosities, and different values of the friction loss coefficient b. 
G =6208 kg/m2 s: pL =const., b=0.01; p o=const., b=O.OI; po=const., b=0.1. G=2160 kg/m* s: pL =const., b=0.01. 
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The results from the transient magma ascent model were found to reproduce very well the analytical 
solutions of wave propagation in volcanic conduits without fnction and gravitational effects, and with 
previous steady state, homogeneous magma ascent models in fissures and volcanic conduits with 
frictional and gravitational effects. When the transient model was applied to the decompression of 
magma in fissures and conduits, very steep flow gradients were found with an exsolution front 
propagating downward toward the magma chamber, and fragmentation and shock wave fronts 
propagating upward toward the conduit exit. The magma decompression results showed very short 
times of front propagation through the conduits and indicate the need for incorporating kinetic effects 
into the gas exsolution model. A realistic transient magma ascent model requires the coupling of the 
conduit model with a transient magma chamber model an4 possibly, with a pyroclastic dispersion 
model above the vent to model correctly the wave propagation through the volcanic conduit and the 
coupling between phenomena occurring in the magma chamber, conduit and volcanic column. Such a 
physical modelling approach, coupled with fiture model-oriented volcanological, geophysical, 
petrological, etc., data should lead to the development of global volcanic simulators and more realistic 
volcanic hazard assessments. 
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